

This is an annual report on the quality of water delivered by the City of Dallas, Georgia. This report meets the federal Safe Drinking Water Act (SDWA) requirements for the Consumer Confidence Report (CCR) and contains information on the source of our water, its constituents, and the health risks associated with any contaminants.

Safe water is vital to our community. Please read this report carefully. If you have any questions, contact the customer service department at (770) 443-8110. 129 East Memorial Dr. Dallas, GA 30132 | M-F, 8 AM- 5 PM | dallasga.gov

Water Source

Paulding County Water System's (PCWS) primary source of water is Richland Creek Reservoir. Water in the reservoir is pumped from the Etowah River and is supplemented with flows from Richland Creek. The Richland Creek Water Treatment Plant uses coagulation, flocculation, dissolved air flotation and filtration to treat the raw water. Granulated activated carbon is used to further treat the water when needed.

Paulding County also purchases treated water from the Cobb County-Marietta Water Authority (CCMWA). The CCMWA has two (2) surface water sources supplying two treatment facilities. The Wyckoff Treatment Division is supplied from Lake Allatoona, a Corps of Engineers impoundment in north Cobb, south Cherokee and south Bartow Counties. The Quarles Treatment Division withdraws water from the Chattahoochee River.

Both PCWS and CCMWA sources have Source Water Assessment Plans (SWAP) itemizing potential sources of water pollution to our surface drinking water supplies. This information can help you understand the potential for contamination of your drinking water supplies and can be used to prioritize the need for protecting drinking water sources.

A copy of Paulding County's Richland Creek SWAP is posted at: https://ga-pauldingcounty.civicplus.com/DocumentCenter/View/11625/RCR-SWAP-Paulding-Final-2018

A copy of the SWAP addressing CCMWA's sources is posted at: https://www.ccmwa.org/sites/default/files/downloads/Cobb Final SWAP2020 Update10 01.pdf

Explanation of Data

Key to Table The tables show the results of our water guality analyses. Every contaminant regulated by EPA that was detected in the water, even at trace levels, is listed here. The table contains the name of AL – Action Level ppm – parts per million or each substance, the highest level allowed by regulation (MCL), the ideal goals for public health (MCLG), the usual sources of such milligrams contamination, footnotes explaining our finding, and a key to units per liter (mg/L) of measurement. Definitions of MCL, MCLG, AL, and TT are important: ppb – parts per billion or MCL – Maximum Maximum Contaminant Level (MCL): The highest level of a **Contaminant Level** micrograms per liter (µg/L) contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment MCLG – Maximum ng/I –Nanograms per liter technology. Contaminant Level Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or Goal: expected risk to health. MCLG's allow for a margin of safety. NTU – Nephelometric TT – Treatment Technique Action Level (AL): The concentration of a contaminant which, if Turbidity Unit exceeded, triggers treatment or other requirements that a water system must implement. Treatment Technique (TT): A required MRDL – Maximum n/a - not applicable process intended to reduce the level of a contaminant in drinking **Residual Disinfectant** water. Maximum Residual Disinfectant Level (MRDL): The highest Level level of a disinfectant allowed in drinking water. There is convincing MRDLG – Maximum evidence that addition of a disinfectant is necessary for control of microbiological contaminants. Residual n/d - not detected Maximum Residual Disinfectant Level Goal (MRDLG): The level **Disinfectant Level Goal** of a drinking water disinfectant below which there is no known or expected risk to health. MRDLG's do not reflect the benefits of the **BDL** – Below Detection use of disinfectants to control microbial contaminants.

Inorganic Contaminants											
Contaminant	Date Tested	Unit	MCL	MCLG	Detected Level	Range	Major Sources	Violation			
Fluoride ¹	2024	ppm	4	4	.95	0.0095	Erosion of natural deposits; water additive which promotes strong teeth	No			
Lead ²	2024	ppb	AL= 15	0	1.2	0.00 – 1.2	Corrosion of household plumbing systems	No			
Copper ³	2024	ppb	AL= 1.3	0	0.091	0.00 – 0.91	Corrosion of household plumbing systems	No			
Nitrate/ Nitrite ⁴	2024	ppm	10	10	.37	0.00 – 0.37	Runoff from fertilizer use; leaching from septic tanks; erosion of natural deposits	No			
Note: ¹ Fluoride is a ² The next ro	Note: ¹ Fluoride is added to water to help the prevention of dental cavities (caries) in children. ² The next round of testing is due 2025.										

Limits

³The next round of testing is due 2025.

⁴Nitrate and Nitrite are measured together as N.

Disinfection By-Products, By-Product Precursors and Disinfectant Residuals

Contaminant Date Unit MCI MCI G Detected Range Major Sources Violat										
Containinant	Tested	onic	mol	molo	Level	Rango		riolation		
TTHMs (Total Trihalomethanes)	2024	ppb	80	0	65.1	22.5 – 65.1	By-products of drinking water disinfection	No		
Stage 2					Highest LRAA at site 501					
HAAs (Haloacetic Acids)	2024	ppb	60	0	50.7	18.2 – 50.7	By-products of drinking water disinfection	No		
Stage 2					Highest LRAA at site 502					
TOC (Total Organic Carbon)	2024	ppm	TT	N/A	1.7	0.8 – 1.90	Decay of organic matter in the water withdrawn from sources such as lakes and streams	No		
Chlorite	2024	ppm	1.0	0.8	0.75	0.29 – 0.75	Byproduct of drinking water disinfection	No		
Chlorine Free	2024	ppm	MRDL=4	MRDLG=4	2.03	1.47 – 2.03	Drinking water disinfectant	No		
Note: ¹ The highes	Note: ¹ The highest detected LRAA (Location Running Annual Average).									

Turbidity											
Contaminant	MCL	MCLG	Level Found	Range	Sample Date	Violation	Typical Source				
Turbidity ³	TT= 1 NTU	0	0.16	N/A	2024	No	Soil runoff				
	TT= percentage of samples <0.3 NTU		100%	N/A							
Note: ³ Turbidity is	a measure of th	e cloudine	ess of the wate	er. We monito	or it because	it is a good indicator of	water quality. High turbidity				

Note: ³Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectants.

Microbiological Contaminants

Contaminant	MCL	MCLG	TT Level 1 Assessment Trigger	Level Detected	Sample Date	Violation	Likely Source		
Total Coliform	TT	N/A	Exceeds 5.0% TC+ samples in a month	0.0%	All Year	No	Naturally present in the environment		
E. coli	One Positive Sample*	0	N/A	0.0%	All Year	No	Human or animal fecal waste		
* A PWS will receive an E. coli MCL violation when there is any combination of an EC+ sample result with a routine/repeat									

TC+ or EC+ sample result

City of Dallas 2024 Microbiological Results

Month	# of coliform positive samples	# of samples collected	% Total coliform positive samples	# of E. coli positive samples	# of samples collected	% E. coli positive samples	Violation
January	0	20	0.00%	0	20	0.00%	NO
February	0	20	0.00%	0	20	0.00%	NO
March	0	20	0.00%	0	20	0.00%	NO
April	0	20	0.00%	0	20	0.00%	NO
Мау	0	20	0.00%	0	20	0.00%	NO
June	0	20	0.00%	0	20	0.00%	NO
July	0	20	0.00%	0	20	0.00%	NO
August	0	20	0.00%	0	20	0.00%	NO
September	0	20	0.00%	0	20	0.00%	NO
November	0	20	0.00%	0	20	0.00%	NO
December	0	20	0.00%	0	20	0.00%	NO
	Highest de coliforr	tected total n level	0.00%	Highest deter leve	cted E. coli el	0.00%	

CCMWA Unregulated Contaminant Monitoring 2024 at both Wyckoff and Quarles Water Treatment Plants

Unregulated Contaminant Monitoring

In addition to testing drinking water for contaminants regulated under the Safe Drinking Water Act, we sometimes also monitor for contaminants that are not regulated. Unregulated contaminants do not have legal limits or MCLs for drinking water.

Detection alone of a regulated or unregulated contaminant should not cause concern. The meaning of a detection should be determined considering current health effects information. We are often still learning about the health effects, so this information can change over time.

Definitions

Acronyms	Definitions
MCLG	Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or
	expected risk to health. MCLGs allow for a margin of safety.
MCL	Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as
	close to the MCLGs as feasible using the best available treatment technology.
TT	Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a
	water system must follow.
MRDLG	Maximum Residual Disinfectant Level Goal: This is the lowest amount of cleaning chemical drinking water should
	have, because it is the lowest amount needed to make sure bacteria and viruses can't live.
MRDL	Maximum Residual Disinfectant Level: The highest level of a disinfectant allowed in drinking water. There is convincing
	evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Level 1	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total
Assessment	coliform bacteria have been found in our water system.
Level 2	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if
Assessment	possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water
	system on multiple occasions.
Mg/L	Number of milligrams in one liter of water
pCi/L	Picocuries per liter (a measure of radioactivity)
NA	Not applicable
ND	Not detected
NR	Monitoring not required, but recommended
NTU	Nephelometric Turbidity Units: Turbidity is measured with an instrument called a nephelometer. Measurements are
	given in nephelometric turbidity units.
PPM	Part Per Million= 1 drop of water in a hot tub
PPB	Part Per Billion = 1 drop of water in an Olympic size swimming pool
PPT	Part Per Trillion (ppt) = 1 drop of water in a lake that's 6 square acres

Unregulated Contaminants PFAS	Date	Highest Detected Level PPT	Range	Sources of Contaminant in Drinking Water
Perfluorooctanoic acid (PFOA)	2024	3.1	<1.9 – 3.1	PFOAs come from a wide range of consumer products, stain-resistant carpet, water-repellent clothes, paper and cardboard packaging, ski wax, and foams used to fight fires. PFOA is also created when other chemicals break down.
Perfluorooctanesulfonic acid (PFOS)	2024	2.7	<1.9 – 2.7	PFOSs can still be found in older consumer products in which it was used before phaseout. PFOA is used in household goods including non- stick coatings like Gore-Tex or cookware (think Teflon), or in carpet and furniture that have been treated to be stain resistant.
Perfluorobutanesulfonic acid (PFBS)	2024	3.9	<1.9 – 3.9	PFBS is the replacement chemical for Scotch guard water repellant. It has been used as a surfactant in industrial processes and in water-resistant or stain resistant coatings on consumer products.
Perfluoroheptanoic acid (PFBA)	2024	4.4	<1.9 – 4.4	PFBA is a breakdown product of other PFAS used in stain-resistant fabrics, paper food packing, and carpets. PFBA was also used for manufacturing photographic film.
Perfluoropentanoic acid (PFPeA)	2024	4.4	1.9 – 4.4	PFPeA is a shorter chain chemical created as a replacement chemical for PFOAs
Perfluorohexanoic acid (PFHxA)	2024	4.9	<1.9 – 4.9	PFHxA is breakdown product of stain- and grease-proof coatings on food packaging and household products
Perfluoropentanesulfonic acid (PFPeS)	2024	Not Detected	N/A	PFPeS comes from a wide range of consumer products that are coated to provide water-resistance or stain- resistance
Perfluoroheptanesulfoic acid (PFHpS)	2024	Not Detected	N/A	PFHpS comes from a wide range of consumer products that are coated to provide water-resistance or stain- resistance
1H,1H,2H,2H-perfluorohexanesulfonic acid (4:2FTS)	2024	Not Detected	N/A	4:2FTS has been used in stain- resistant fabrics, fire-fighting foams, food packaging, and as a surfactant in industrial processes
1H, 1H, 2H, 2H-perfluorooctanesulfonic acid (6:2FTS)	2024	Not Detected	N/A	6:2FTS can functionalize gallium nitride (GaN) to tune the optical properties, which can potentially be used in chemical sensor based applications. It can modify the surface characteristics of copper substrates that find usage in printed circuit boards as copper foils

1H, 1H ,2H, 2H-perfluorodecanesulfonic acid (8:2FTS)	2024	Not Detected	N/A	8:2FTS is an aliphatic compound for fluorinated surfactant synthesis. It can modify the surface characteristics of copper substrates that find usage in printed circuit boards as copper foils. It can also be coated on the indium tin oxide substrate, which may be utilized in organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs).
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	2024	Not Detected	N/A	NMeFOSAA chemicals used in many consumer products
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	2024	Not Detected	N/A	NEtFOSAA created as a replacement chemical for PFOAs used in a wide variety of consumer products.
Perfluoro-3-methoxypropanoic acid (PFMOPrA) or (PFMPA)	2024	Not Detected	N/A	PFMOPrA created as a replacement chemical for PFOS used in a wide variety of consumer products
Perfluoro(4-methoxybutanoic acid) (PFMBA)	2024	Not Detected	N/A	PFMBA is in a variety of consumer products
Perfluoro-3,6-dioxaheptanoic acid (NFDHA)	2024	Not Detected	N/A	Perfluoro-3,6-dioxaheptanoic acid is in a variety of consumer products
9-Chlorohexadecafluoro-3-oxanonane-1- sulfonic acid (9CL-PF3ONS)	2024	Not Detected	N/A	9CI-PF3ONS or F53B created as a replacement chemical for PFOAs and PFOS used in a wide variety of consumer products
11-Chloroeicosafluoro-3-oxaundecane-1- sulfonic acid (11CL-PF3OudS)	2024	Not Detected	N/A	11CI-PF3OudS created as a replacement chemical for PFOAs and PFOS used in a wide variety of consumer products
Perfluoro (2-ethoxyethane) sulfonic acid (PFEESA)	2024	Not Detected	N/A	PFEESA is a specialty chemical used in various industries, including electronics, aerospace, and product surface treatment.
Perfluoroheptanoic acid (PFHpA)	2024	Not Detected	N/A	Breakdown product of stain-and grease-proof coatings on food packaging, couches, carpets. A 7- carbon version of PFOA
Perfluorohexanesulfonic acid (PFHxS)	2024	Not Detected	N/A	Sources include firefighting foams, textile coating, metal plating and in polishing agents
Perfluorononanoic acid (PFNA)	2024	Not Detected	N/A	PFNA is used as surfactant for the production of the fluoropolymerpolyvinylidene fluoride
Perfluorodecanoic acid (PFDA)	2024	Not Detected	N/A	PFDA is a fluoro surfactant and has been used in industry, with applications as wetting agent and flame retardant.

Perfluorododecanoic acid (PFDoA)	2024	Not Detected	N/A	PFDoA is a product of stain-and grease-proof coatings on food packaging, soft furnishings and carpets.
Perfluorotridecanoic acid (PFTrDA)	2024	Not Detected	N/A	PFTrDA is a product of stain-and grease-proof coatings on food packaging, soft furnishings and carpets
Perfluoroundecanoic acid (PFUnA)	2024	Not Detected	N/A	PFUnA is a product of stain-and grease-proof coatings on food packaging, soft furnishings and carpets.
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) or (GenX)	2024	Not Detected	N/A	HFPO-DA/GenX Sources include food packaging, paints, cleaning products, non-stick coatings, outdoor fabrics and firefighting foam.
4,8-dioxia-3H-perflourononanoic acid (ADONA)	2024	Not Detected	N/A	Sources include food packaging, paints, cleaning products, non-stick coatings, outdoor fabrics and firefighting foam.
Perfluorotetradecanoic acid (PFTeDA)	2024	Not Detected	N/A	Sources include food packaging, paints, cleaning products, non-stick coatings, outdoor fabrics and firefighting foam.

REMAINDER OF PAGE LEFT BLANK INTENTIONALLY

LEAD & COPPER RULE REVISIONS (LCRR)

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in

home plumbing. The City of Dallas is responsible for providing high-quality drinking water and removing lead pipes, but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for

drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry, or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period.

If you are concerned about lead in your water and wish to have your water tested, contact the City of Dallas at 770-443-8110.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <u>http://www.epa.gov/safewater/lead</u>.

Analyte	Date	MCLG	Action Level (AL)	Ra	ge	Units	Violation
	Sampled			Low	High		
Lead	2024	0	15	0.00	1.2	ppb	None
Copper	2024	1.3	1.3	0.00	0.91	ppm	None

To access all individual Lead Tap Samples for GA2230000 Dallas: https://gadrinkingwater.net/DWWPUB/

The Service Line Inventory (SLI) is a requirement under the Lead and Copper Rule Revisions (LCRR) to help water systems identify and replace lead service lines. It mandates that all public water systems develop and maintain an inventory of service line materials to assess the presence of lead and protect public health. The inventory will support proactive lead reduction efforts and ensure compliance with regulatory requirements to minimize lead exposure in drinking water.

To access the SLI for GA2230000 Dallas Click Here

Cryptosporidium is a microbial pathogen found in surface water throughout the U.S. Although filtration removes Cryptosporidium, the most commonly-used filtration methods cannot guarantee 100 percent removal. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immuno-compromised people, infants and small children, and the elderly are at greater risk of developing life threatening illness. We encourage immuno-compromised individuals to consult their doctor regarding appropriate

precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water.

The monitoring of CCMWA source water performed in 2013 had no detection of cryptosporidium. Testing was only required for a period of nine months in 2013.

Additional Health Information

to contaminants in drinking water than the general population. Immunocompromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly people, and infants can be particularly at risk. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* are available from the EPA's *Safe Drinking Water Hotline at 1.800.426.4791*.

Some people may be more vulnerable

To ensure tap water is safe to drink, EPA (Environmental Protection Agency) prescribes limits on the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's *Safe Drinking Water Hotline at 1.800.426.4791*.

Examples of Water Contaminants:

4,4

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

Microbial contaminants such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Inorganic contaminants such as salts and metals which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

Pesticides and herbicides which may come from a variety of sources such as agriculture, storm water runoff, and residential uses.

Organic chemical contaminants, including synthetic (man-made) and volatile organics, which are by-products of industrial processes and petroleum production, and can also come from gasoline stations, urban storm water runoff, and septic systems.

Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.