

ANNUAL WATER Quality Report 2022

This is an annual report on the quality of water delivered by the City of Dallas, Georgia. This report meets the federal Safe Drinking Water Act (SDWA) requirements for the Consumer Confidence Report (CCR) and contains information on the source of our water, its constituents, and the health risks associated with any contaminants.

Safe water is vital to our community. Please read this report carefully. If you have any questions, contact the customer service department at (770) 443-8110.

Water Source

Paulding County Water System's (PCWS) primary source of water is Richland Creek Reservoir. Water in the reservoir is pumped from the Etowah River and is supplemented with flows from Richland Creek. The Richland Creek Water Treatment Plant uses coagulation, flocculation, dissolved air floatation and filtration to treat the raw water. Granulated activated carbon is used to further treat the water when needed.

Paulding County also purchases treated water from the Cobb County Marietta Water Authority (CCMWA). The CCMWA has two (2) surface water sources supplying two treatment facilities. The Wyckoff Treatment Division is supplied from Lake Allatoona, a Corps of Engineers impoundment in north Cobb, south Cherokee and south Bartow Counties.

The Quarles Treatment Division withdraws water from the Chattahoochee River. Both PCWS and CCMWA sources have Source Water Assessment (SWA) itemizing potential sources of water pollution to our surface drinking water supplies. This information can help you understand the potential for contamination of your drinking water supplies and can be used to prioritize the need for protecting drinking water sources.

A copy of Paulding County's Richland Creek SWA is posted at: <u>https://ga-pauldingcounty.civicplus.com/DocumentCenter/View/11625/RCR-SWAP-Paulding-Final-2018</u> A copy of Paulding County's Richland Creek SWA is posted at: <u>https://northgeorgiawater.org/conserve-our-water/water-supply-in-our-region/</u>

The City of Dallas | 129 E. Memorial Dr. Dallas, GA 30132

(770) 443- 8110 | <u>www.dallasga.gov</u>

Your Water Meets All Standards

In the tables listed below, please find all the substances that were detected in the drinking water in 2022. Every contaminant regulated by EPA that was detected in the water, even at trace levels are listed below.

Explanation of Data Table

The tables show the results of our water quality analyses. Every contaminant regulated by EPA that was detected in the water, even at trace levels, is listed here. The table contains the name of each substance, the highest level allowed by regulation (MCL), the ideal goals for public health (MCLG), the usual sources of such contamination, footnotes explaining our finding, and a key to units of measurement. Definitions of MCL, MCLG, AL, and TT are important:

<u>Maximum Contaminant Level (MCL</u>): The highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLG's allow for a margin of safety.

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must implement.

<u>Treatment Technique (TT)</u>: A required process intended to reduce the level of a contaminant in drinking water.

<u>Maximum Residual Disinfectant Level (MRDL)</u>: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbiological contaminants.

<u>Maximum Residual Disinfectant Level Goal (MRDLG)</u>: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Key to Table	
AL – Action Level	ppm – parts per million or milligrams per liter (mg/L)
MCL – Maximum Contaminant Level	ppb – parts per billion or micrograms per liter (µg/L)
MCLG – Maximum Contaminant Level Goal:	TT – Treatment Technique
NTU – Nephelometric Turbidity Unit	n/a – not applicable
MRDL – Maximum Residual Disinfectant Level	n/d – not detected
MRDLG – Maximum Residual Disinfectant Level Goal	BDL – Below Detection Limits

The data presented in this report are from the most recent testing done in accordance with regulations.

Contaminant	Date Tested	Unit	MCL	MCLG	Detected Level	Range	Major Sources	Violation
Fluoride ¹	2022	ppm	4	4	.99	0.12 99	Erosion of natural deposits; water additive which promotes strong teeth	No
Lead ²	2022	ppb	AL= 15	0	3.1	N/A	Corrosion of household plumbing systems	No
Copper ³	2022	ppb	AL= 1300	0	250	N/A	Corrosion of household plumbing systems	No
Nitrate/ Nitrite ⁴	2022	ppm	10	10	.20	n/d20	Runoff from fertilizer use; leaching from septic tanks; erosion of natural deposits	No

⁴Nitrate and Nitrite are measured together as N.

Disinfection By-Products, By-Product Precursors and Disinfectant Residuals

Contaminant	Date Tested	Unit	MCL	MCLG	Detecte d Level	Range	Major Sources	Violation
TTHMs (Total Trihalomethanes)	2022	ppb	80	0	53	35- 65	By-products of drinking water disinfection	No
Stage 2					Highest LRAA at site 501			
HAAs (Haloacetic Acids)	2022	ppb	60	0	5.34	3.5- 6.5	By-products of drinking water disinfection	No
Stage 2					Highest LRAA at site 502			
TOC (Total Organic Carbon)	2022	ppm	TT	N/A	1.6-2.1	0.99 – 2.10	Decay of organic matter in the water withdrawn from sources such as lakes and streams	No
Chlorite	2022	ppm	1.0	0.8	0.38- 0.72	0.021- 0.72	Byproduct of drinking water disinfection	No
Chlorine Free	2022	ppm	MRDL=4	MRDLG=4	2.10- 2.45	0.00– 2.45	Drinking water disinfectant	No

Turbidity								
Contaminant	MCL	MCLG	Level Found	Range	Sample Date	Violation	Typical Source	
Turbidity ³	TT= 1 NTU TT= percentage of samples <0.3 NTU	0	0.12 100%	N/A N/A	2022	No	Soil runoff	

Note: ³Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectants.

Microbiological Contaminants

Contaminant	MCL	MCLG	TT Level 1 Assessment Trigger	Level Detected	Sample Date	Violation	Likely Source
Total Coliform	TT	N/A	Exceeds 5.0% TC+ samples in a month	0.0%	All Year	No	Naturally present in the environment
E. coli	One Positive Sample*	0	N/A	0.0%	All Year	No	Human or animal fecal waste

* A PWS will receive an E. coli MCL violation when there is any combination of an EC+ sample result routine/repeat TC+ or EC+ sample result

City of Dallas 2022 Microbiological Results

Month	# of coliform positive samples	# of samples collected	% Total coliform positive samples	# of E. coli positive samples	# of samples collected	% E. coli positive samples	Violation		
January	0	20	0.00%	0	20	0.00%	NO		
February	0	20	0.00%	0	20	0.00%	NO		
March	0	20	0.00%	0	20	0.00%	NO		
April	0	20	0.00%	0	20	0.00%	NO		
Мау	0	20	0.00%	0	20	0.00%	NO		
June	0	20	0.00%	0	20	0.00%	NO		
July	0	20	0.00%	0	20	0.00%	NO		
August	0	20	0.00%	0	20	0.00%	NO		
September	0	20	0.00%	0	20	0.00%	NO		
November	0	20	0.00%	0	20	0.00%	NO		
December	0	20	0.00%	0	20	0.00%	NO		
	Highest detected total coliform level		0.00%	Highest dete leve		0.00%			

U	Unregulated Contaminants Tested By CCMWA							
Unregulated Contaminants PFAS	Date	Detected Level PPT	EPA Method	Reporting Limit PPT	Sources of Contaminant in Drinking Water			
Perfluorooctanoic acid (PFOA)1	9/14/2022	Not Detected	537.1	5	PFOAs come from a wide range of consumer products, stain-resistant carpet, water-repellent clothes, paper and cardboard packaging, ski wax, and foams used to fight fires. PFOA is also created when other chemicals break down.			
Perfluorooctanesulfonic acid (PFOS)1	9/14/2022	Not Detected	537.1	5	PFOSs can still be found in older consumer products in which it was used before phase- out. PFOA is used in household goods including non-stick coatings like Gore-Tex or cookware (think Teflon), or in carpet and furniture that have been treated to be stain resistant.			
Perfluorobutanesulfonic acid (PFBS)2	9/14/2022	Not Detected	537.1	5	PFBS is the replacement chemical for Scotch guard water repellant. It has been used as a surfactant in industrial processes and in water-resistant or stain- resistant coatings on consumer products.			
Perfluoroheptanoic acid (PFHpA)	9/14/2022	Not Detected	537.1	5	Breakdown product of stain- and grease- proof coatings on food packaging, couches, carpets. A 7-carbon version of PFOA			
Perfluorohexanesulfonic acid (PFHxS)	9/14/2022	Not Detected	537.1	5	Sources include firefighting foams, textile coating, metal plating and in polishing agents			

Perfluorononanoic acid (PFNA)	9/14/2022	Not Detected	537.1	5	PFNA is used as surfactant for the production of the fluoropolymer polyvinylidene fluoride
Perfluorodecanoic acid (PFDA)	9/14/2022	Not Detected	537.1	5	PFDA is a fluorosurfactant and has been used in industry, with applications as wetting agent and flame retardant.
Perfluorohexanoic acid (PFHxA)3	9/14/2022	Not Detected	537.1	5	PFHxA is breakdown product of stain- and grease-proof coatings on food packaging and household products.
Perfluorododecanoic acid (PFDoA)	9/14/2022	Not Detected	537.1	5	PFDoA is a product of stain- and grease- proof coatings on food packaging, soft furnishings and carpets.
Perfluorotridecanoic acid (PFTrDA)	9/14/2022	Not Detected	537.1	5	PFTrDA is a product of stain- and grease- proof coatings on food packaging, soft furnishings and carpets
Perfluoroundecanoic acid (PFUnA)	9/14/2022	Not Detected	537.1	5	PFUnA is a product of stain- and grease- proof coatings on food packaging, soft furnishings and carpets.
N-ethyl Perfluorooctanesulfonam idoacetic acid	9/14/2022	Not Detected	537.1	5	Sources include stain- and grease-proof coatings on food packaging, soft furnishings and carpets.
N-methyl Perfluorooctanesulfonam idoacetic acid	9/14/2022	Not Detected	537.1	5	Sources include stain- and grease-proof coatings on food packaging, soft furnishings and carpets.
HFPO-DA/GenX	9/14/2022	Not Detected	537.1	5	Sources include food packaging, paints, cleaning products, non-stick coatings, outdoor fabrics and firefighting foam.
4,8-dioxia-3H- perflourononanoic acid (ADONA)	9/14/2022	Not Detected	537.1	5	Sources include food packaging, paints, cleaning products, non-stick coatings, outdoor fabrics and firefighting foam.
9CI-PF3ONS/F-53B Major	9/14/2022	Not Detected	537.1	5	Sources include food packaging, paints, cleaning products, non-stick coatings, outdoor fabrics and firefighting foam
11CI-PF3OUdS/F-53B Minor	9/14/2022	Not Detected	537.1	5	Sources include food packaging, paints, cleaning products, non-stick coatings, outdoor fabrics and firefighting foam
Perfluorotetradecanoic acid (PFTeDA)	9/14/2022	Not Detected	537.1	5	Sources include food packaging, paints, cleaning products, non-stick coatings, outdoor fabrics and firefighting foam. ch are 70 ppt (ng/L). This is combined or

1PFOA and PFOS- The EPA only has health advisories for PFOA and PFOS, which are 70 ppt (ng/L). This is combined or individual. The detects for these compounds for Quarles were 2.4 and 2.3 ng/L respectively. Well below the health advisory level.

2PFHxA- The State of Illinois has a health advisory for PFHxA, while EPA does not. The Illinois health advisory is 560,000 ppt (ng/L). The detected amount for Quarles was 3.4 ng/L.

3PFBS- The State of Illinois has a health advisory for PFBS, while EPA does not. The Illinois health advisory is 2,100 ppt (ng/L). The detected amount for Quarles was 2.2 ng/L.

Cryptosporidium is a microbial pathogen found in surface water throughout the U.S. Although filtration removes Cryptosporidium, the most commonly-used filtration methods cannot guarantee 100 percent removal. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the

disease within a few weeks. However, immunocompromised people, infants and small children, and the elderly are at greater risk of developing life-threatening illness. We encourage immuno-compromised

individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water. The monitoring of CCMWA source water performed in 2013 had no detection of cryptosporidium. Testing was only required for a period of nine months in 2013.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly people, and infants can be particularly at risk. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the EPA's **Safe Drinking Water Hotline at 1.800.426.4791**

Additional Health Information To ensure tap water is safe to drink, EPA (Environmental Protection Agency) prescribes limits on the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at 1.800.426.4791. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Paulding County Water System is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Examples of Water Contaminants:

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

	Microbial contaminants such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife
<u>í</u>	Inorganic contaminants such as salts and metals which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
	Pesticides and herbicides which may come from a variety of sources such as agriculture, storm water runoff, and residential uses.
	Organic chemical contaminants, including synthetic (man-made) and volatile organics, which are by- products of industrial processes and petroleum production, and can also come from gasoline stations, urban storm water runoff, and septic systems.
	Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.